Abstract:
Acylindricity may be viewed as a generalization of being a uniform lattice in a locally compact second countable group. The theory of acylindrical actions on hyperbolic spaces has seen an explosion in recent years. Trees are of course examples of hyperbolic spaces, and by considering products, we start to see new and interesting behaviors that are not present in rank-1, such as the simple Burger-Mozes-Wise lattices, or Bestvina-Brady kernels.
In a joint work with S. Balasubramanya we introduce a new class of nonpositively curved groups. Viewing the theory of S-arithmetic semi-simple lattices as inspiration, we extend the theory of acylindricity to higher rank and consider finite products of
Status: Accepted
Collection: Plenary Talks
Back to collection