Sign up or sign in

The stabilized automorphism group of minimal systems

Jennifer N. Jones-Baro ⟨jenniferjones2024@u.northwestern.edu⟩

Abstract:

The stabilized automorphism group of a dynamical system (X,T) is the group of all self-homeomorphisms of X that commute with some power of T. In this talk, we will describe the stabilized automorphism group of minimal systems. The main result we will prove is that if two minimal systems have isomorphic stabilized automorphism groups and each has at least one non-trivial rational eigenvalue, then the systems have the same rational eigenvalues.

Scheduled for: 2025-03-07 03:55 PM: Jennifer Jones-Baro in Forbes 2070D

Status: Accepted

Collection: Dynamical Systems

Back to collection