Sign up or sign in

Properties of Eigenvalues of Fractal Laplacian

Andrew Chincea ⟨achincea@students.kennesaw.edu⟩

Abstract:

We investigate the properties of the eigenvalues of the fractal Laplacian. We begin by defining the fractal Laplacian operator in one dimension and formulate the corresponding Dirichlet eigenvalue problem. Analytical solutions are obtained for specific fractal parameters, and computational results illustrate the structure of eigenvalues and their associated eigenfunctions. We extend our analysis to two dimensions using separation of variables. Our findings contribute to a deeper understanding of how fractal geometry affects the spectral characteristics of differential operators.

Notes:

Authors: Eric Stachura, Andrew Chincea

Scheduled for: 2025-03-01 10:45 AM: Undergraduate Poster Session #7 in Phillips Lobby

Status: Accepted

Collection: Undergraduate Posters

Back to collection